2018年4月28日 脱原発をめざす首長会議

脱原発は可能か?

~エネルギー転換の実現に向けて~

都留文科大学地域社会学科 教授 高橋 洋

脱原発は可能か?

もちろん、可能です。

・事例:ドイツ、オーストラリア、日本

では、どうしたらよいか?

- いつまでに、どうするか:再エネ・省エネとの兼ね合い
- ・不利益をどう扱うか:電力会社との合意形成

脱原発への反対論

総論・共通

・経済性:再工ネは高い、送電網等システム費用

・安定供給:変動電源に頼れない、送電網が不十分

・エネルギー自給:準国産(再エネだけでは不足)

・環境性:ゼロエミッション(再エネだけでは不足)

国の本音

・産業政策:原子炉メーカー、原発事業者

・安全保障:核燃料サイクル

・政府の無謬性:立地自治体との関係

電力会社の本音

・主力電源を失う:競争上不利、雇用問題

・ 資産償却の問題:特に即ゼロの場合

・固定観念:原発は安定供給に不可欠、再工ネは不安定

本日のお話

①エネルギー転換における原発と再生可能エネルギー

②日本の再生可能エネルギーと電力システム改革

③エネルギー転換における地域の役割

④改めて、脱原発を実現するには?

①エネルギー転換における 原発と再生可能エネルギー

エネルギー転換の構図

〈集中型システム〉

<分散型システム>

石炭、原子力

主要エネルギー

再生可能エネルギー 熱電併給、省エネ

独占・計画

原理

競争・協調

大都市の大企業

事業主体

多様な地域企業、NPO

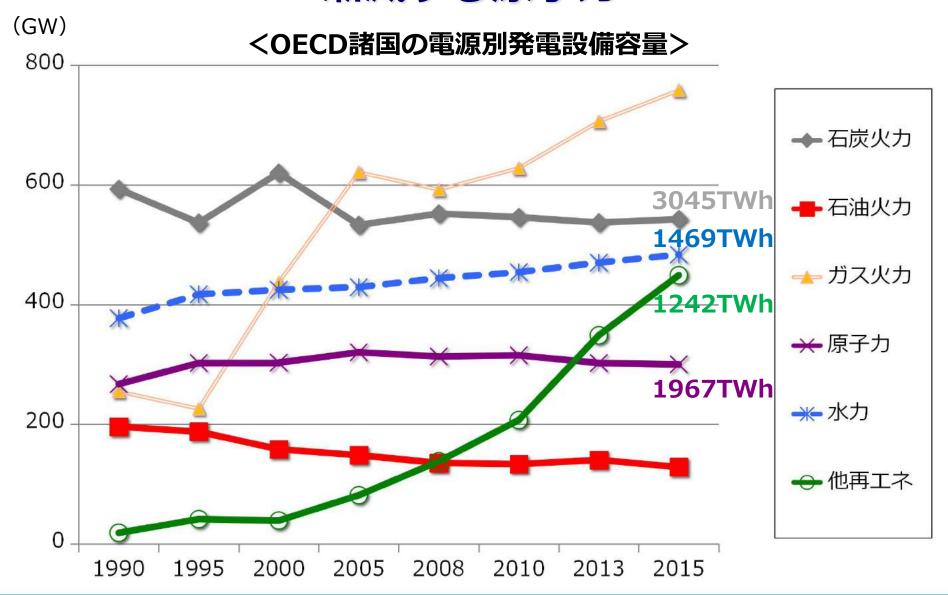
小:受動的・均一性

消費者の役割

大:能動的・多様性

国・エネ庁

政策主体


自治体・住民

低:気候変動、放射能

環境適合性

高:低炭素、安全

漸減する原子力

新興国での再工ネの拡大

<風力発電の導入上位国:単年度容量>

	2011年	2013年	2015年	2017年
1位	中国	中国	中国	中国
2位	アメリカ	ドイツ	米国	米国
3位	インド	イギリス	ドイツ	ドイツ
4位	ドイツ	インド	ブラジル	イギリス
5位	イギリス	カナダ	インド	インド
6位	カナダ	アメリカ	カナダ	ブラジル
7位	イタリア	ブラジル	ホ° −ラント"	フランス
8位	スペイン	ホ° −ラント"	フランス	トルコ
9位	フランス	ルーマニア	イギリス	南アフリカ
10位	スウェーテ゛ン	オーストラリア	トルコ	メキシコ

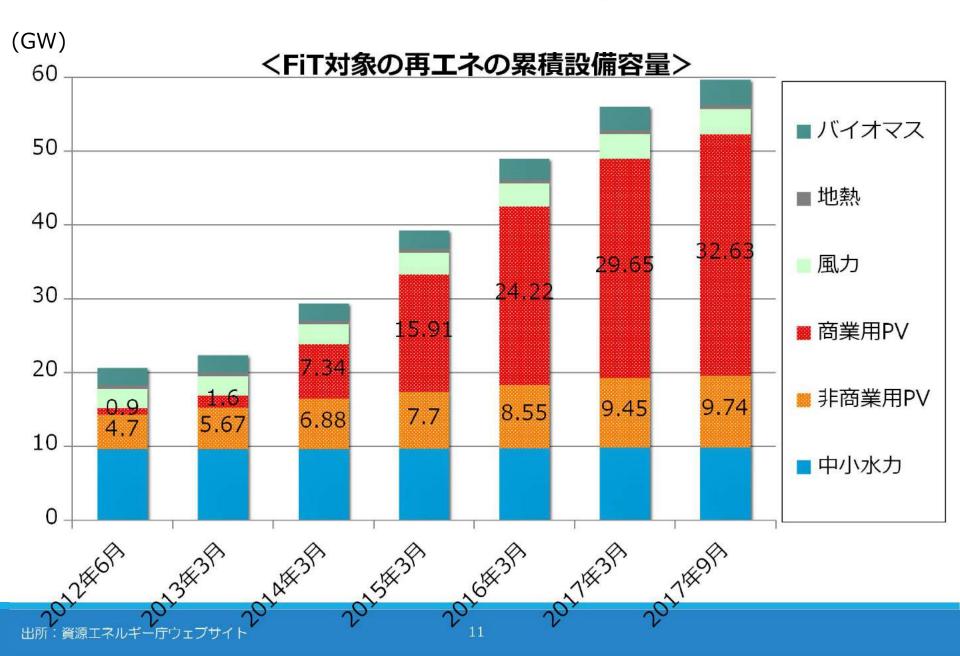
<太陽光発電の導入上位国:単年度容量>

	2011年	2013年	2015年	2017年
1位	イタリア	中国	中国	中国
2位	ドイツ	日本	日本	米国
3位	中国	米国	米国	インド
4位	アメリカ	ドイツ	イギリス	日本
5位	フランス	イタリア	インド	トルコ
6位	日本	イギリス	ドイツ	ドイツ
7位	ベルギー	インド	オーストラリア	オーストラリア
8位	イギリス	ルーマニア	韓国	韓国
9位	オーストラリア	ギリシャ	フランス	イギリス
10位	スペイン	オーストラリア	カナダ	ブラジル

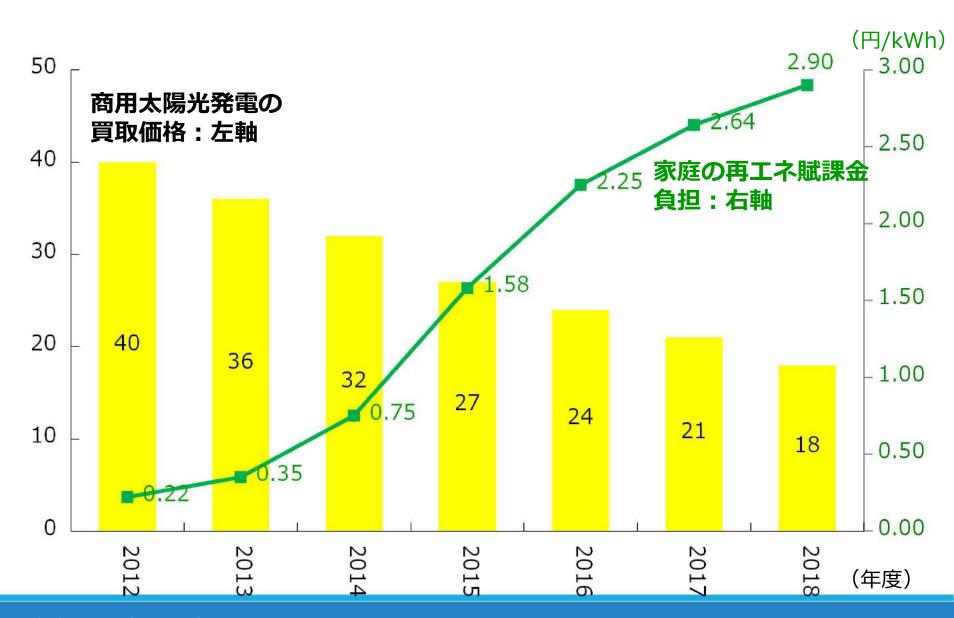
再エネのコスト低下、原子力のリスク増

●再エネのコスト低下:大量生産

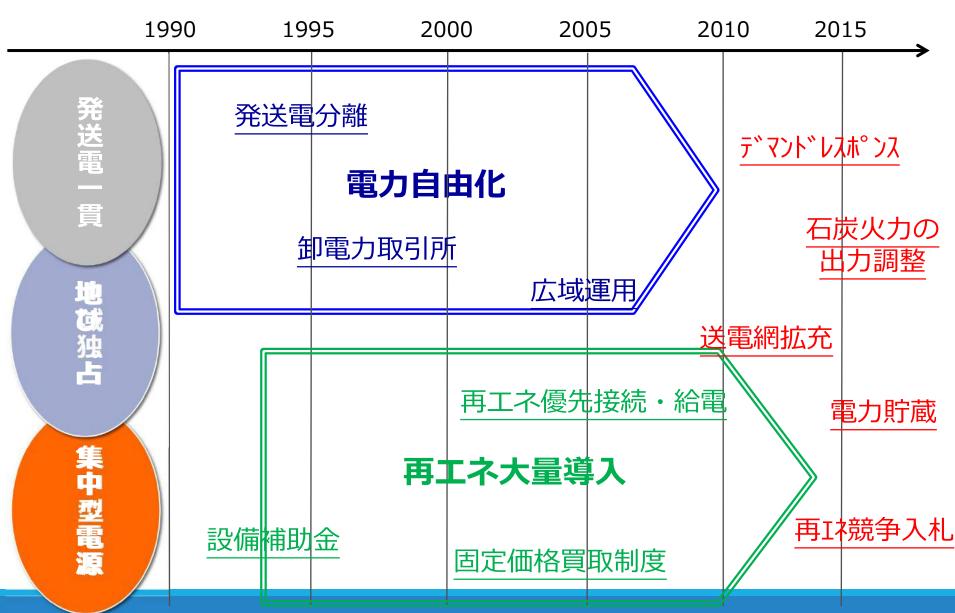
	太陽光	陸上風力	洋上風力	バイオマス	水力
2010年	39.6円/kWh	8.8円/kWh	18.7円/kWh	7.7円/kWh	 4.4円/kWh
2017年	11円/kWh	6.6円/kWh	15.4円/kWh	7.7円/kWh	5.5円/kWh

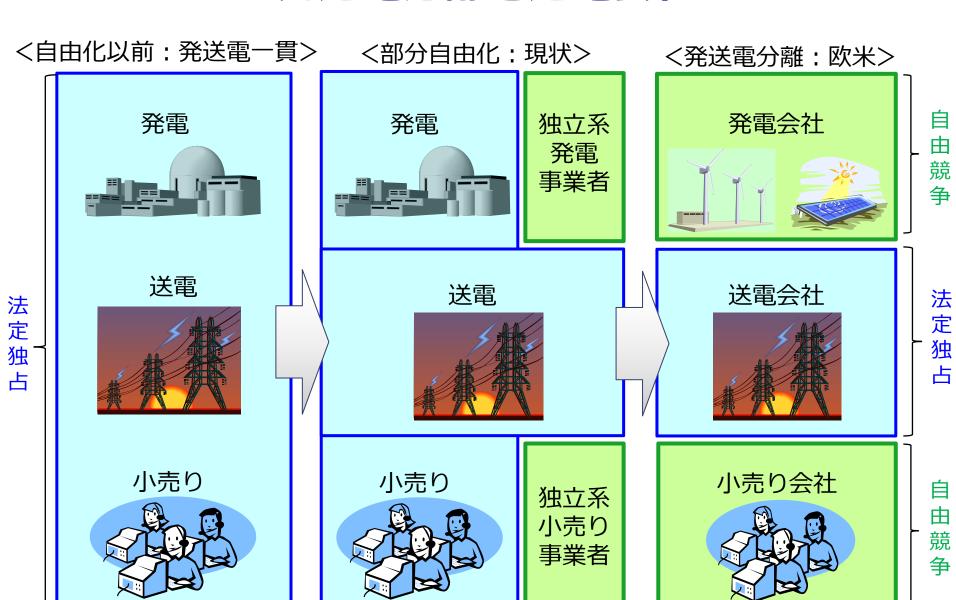

出所: IRENA, Renewable Power Generation Costs in 2017.\$1=110円で換算。

●原発事業のリスク増・コスト増:安全性への懸念


- ・米国:ウェスティングハウス破産、東芝の債務保証(6600億円)
- ・英国:ホライズンの原発事業に日本政府が債務保証(1.1兆円)
- ・トルコ:三菱重工の原発事業費が倍増、遅延(2.1兆円⇒4兆円)

②日本の再生可能エネルギーと 電力システム改革


日本における再生可能エネルギー導入


太陽光の買取価格と賦課金負担

電力システム改革の具体的手段

発送電分離と送電会社

再エネの系統接続問題

①「九電ショック」と無補償の出力抑制

- ・地域内の「接続可能量」の設定
- =再エネの(有補償での)接続上限

②基幹送電網の増強費用の負担

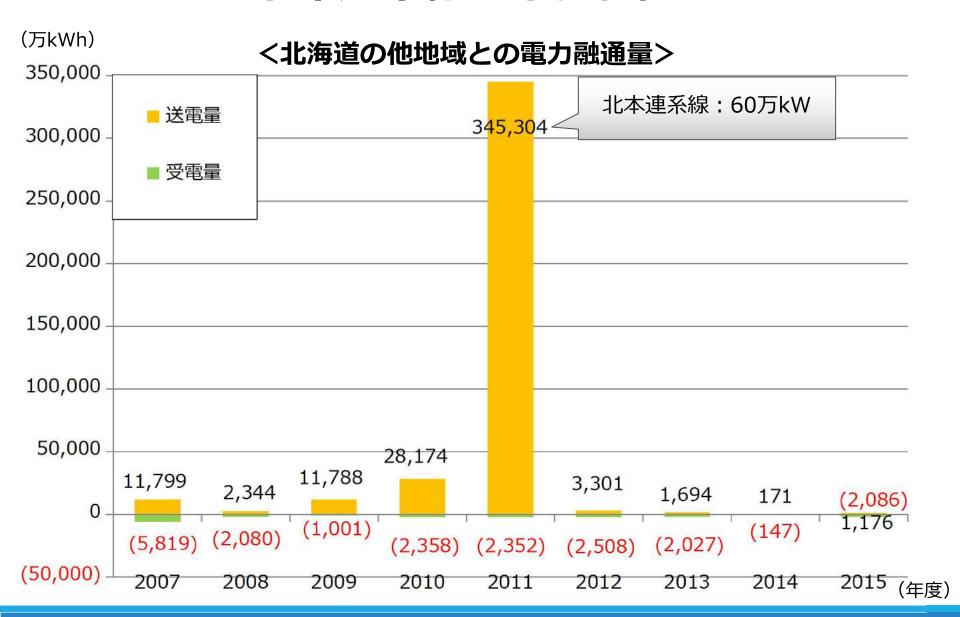
- ・DEEP方式
- = 再工ネ発電事業者の「受益者」負担

③空き容量問題

- ・既存の送電網:実際は「ガラガラ」
- = 先着優先の利用ルール
- ・原発等の送電枠を常時確保

<欧州の状況>

- ⇔「接続上限」は存在しない
 - ・変動性に対して柔軟に需給調整
 - 広域運用、揚水、火力出力調整
- ・限定的な出力抑制:独は補償


⇔SHALLOW方式(多数派)

・送電会社の(公益的)負担

⇔送電網の高い利用率

- ・市場ベースで利用権を配分
- ・再工ネ事業者も利用可能

北本連系線はもう満杯?

③エネルギー転換における地域の役割

再生可能エネルギーと地域の親和性

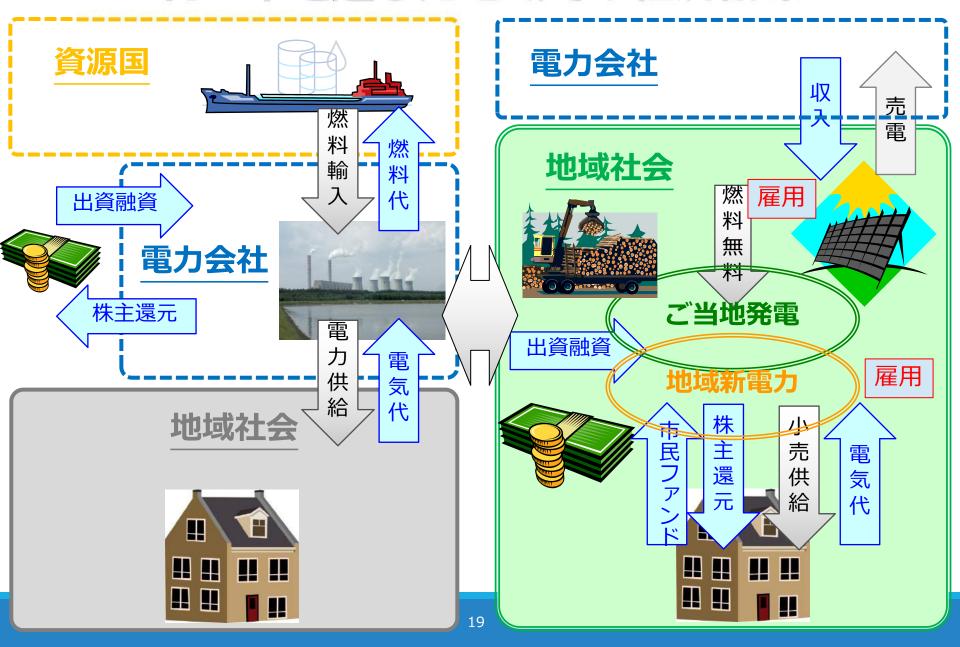
地域固有の資源

・太陽光、風力、地熱、水力 ⇔化石燃料、ウラン

地域的制約の調整

- · 地熱: 国立公園、温泉組合
- · 小水力:農業用水、水利権
- ・バイオマス:林業、畜産業

小規模な事業主体


- ・中小企業やNPO、町村でも取り組み可能
- ・金融:市民ファンド、地域の信用金庫

地域活性化の手段

- ・地元事業体による直接雇用、利潤
- ・エネルギー費用の節約、省エネの推進
- ・関連事業への波及:金融業、林業、観光業

再エネを通した地域での経済循環


「地域エネルギー事業」の4類型

発電・卸売り

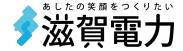
Tokushima Regional Energy General incorporated Association

一般社団法人 徳島地域エネルギー

雲から町やすはら

サステイナブルなひと、

地域企業 NPO



生活クラブ

自治体

湘南電力

『コープさっぽろ -co₂op。 one for all, all for one.

株式会社やまがた新電力 Yamagata Power Supply Co.,Ltd

小売り供給

鳥取県米子市:ゴミ発電を活用した小売り

●地域のケーブルテレビ会社を軸に、自治体が支援

・中海テレビ(50%)、山陰酸素(20%)、米子市(10%)

・背景:2011年からのスマートコミュニティ構想普及支援事業

·目的:地域内資金循環、雇用創出

米子市・ゴミ発電 (1.85MW:発電量の74%)

・他電源:地域ソーラー, JEPX

・常時BUは使わない

- ・販売先:現状では高圧に限定、家庭用小売は各社が自由に
- ・市の公共施設中心:エネルギー費用削減
- ・原則地域の再工ネ電力:余剰分を市場売電
- ・常勤5人+パート:自前で需給調整

④改めて、脱原発を実現するには?

主要国の電源ミックス目標

国名	再工ネ目標	原子力目標	石炭火力目標
ドイツ	50% (2030年)	ゼロ (2022年)	段階的削減
 英国	30% (2020年)	16GW(2030年)	ゼロ (2025年)
フランス	40% (2030年)	50% (2025年)	ゼロ (2022年)
日本	22-24% (2030年)	20-22% (2030年)	26% (2030年)
台湾	20%(2025年)	ゼロ (2025年)	

新たな「エネルギー基本計画2018」?

エネルギー基本計画2014	2030年の 電源ミックス		エネルギー基本計画2018
キーワード:3E+S		·	全方位の複線シナリオ
<u>重要なベースロード</u> 電源 低コスト、安定供給	20-22%	原子力	重要電源 課題:社会的信頼
<u>重要なベースロード</u> 燃料 化石の中で最も安い	26%	石炭	ガスシフト 高効率クリーンコール
<u>重要な</u> エネルギー源 課題:安定供給、コスト	22-24%	再エネ	<u>主力</u> 電源化を目指す 火力による補完が必要

3つの脱原発法案

	立憲民主党	希望の党	原自連
脱原発期限	施行後5年以内	2030年	即ゼロ
再稼働等	しない	安定供給に支障 がある場合	しない
再工ネ目標 (2030年)	40%以上	40%以上	50%
不利益対応	電力会社、立地地 域の雇用・経済に 国が必要な支援	電力会社の逸失利 益に対し国が責務	原発事業者の 会計上の特別措置、 自治体の 経済財政対策

脱原発に向けた再工ネ導入の見通し

2016年 (実績) 再工ネ 15% ガス火力 44% 石炭火力 32%

石油 火力

・再工ネ:系統対策(制度改革)、再工ネ立地・景観問題

賦課金負担(家庭用電気料金の~20%)

・省エネ:電力消費減(10~20%)、デマンドレスポンス

· 原発事業者対策

2030年

再工ネ 40% ガス火力 50% 石炭 火力?

・再工ネ:系統増強対策(国内、国外)、再工ネ廃棄物問題 スマートグリッド化

・省エネ:電力消費減(20~40%)、EVとの兼ね合い

・セクター・カップリング: V2G、Power to Gas/Heat

2050年

再エネ 70%

ガス火力 30%

地域・自治体への期待

地域のエネルギー事業

- ・地域主体による、地域に根ざした事業展開
- ・バイオマスの熱供給、地熱発電、小水力発電
- ・再工ネ電力小売り事業+熱供給+DR+EV

目治体のエネルギー政策

- ・再工ネ立地・景観問題の調整役:ゾーニング
- ・省エネ推進・事業支援
- ·人材育成:役所内、地域内

国への政策提言

- ・脱原発:地域の利害から、国民全体の不利益から
- ・再エネ:地域主導型事業の推進系統接続問題の解決
- ・省エネ:カーボンプライシング、断熱基準強化

ご清聴ありがとうございました。

エネルギー転換の実現に向けて、 一緒に頑張りましょう。